Топологическая схема сети. Топология сети: определение, виды, назначение. Топологии локальных вычислительных сетей

Термин «топология» имеет достаточно много значений, одно из которых применяется в компьютерном мире для описания сетей. Что такое топология далее и будет рассмотрено. Но, несколько забегая вперед, в самом простом случае это понятие можно рассматривать как описание конфигурации (расположения) компьютеров, подключенных к сети. Иными словами, все сводится к пониманию даже не самих соединений, а геометрических фигур, которые соответствуют каждому типу расположения терминалов.

Что понимается под топологией локальной сети?

Как уже понятно, компьютеры, объединяемые в единые сети, подключаются к ним не хаотично, а в строго определенном порядке. Для описания этой схемы и было введено понимание топологии.

По сути, что такое топология? Карта, схема, диаграмма, карта. Описательный процесс, как уже понятно, в чем-то сродни элементарным знаниям по геометрии. Однако только чисто с геометрической точки зрения этот термин рассматривать нельзя. Поскольку речь идет не только о подключениях, а еще и о передаче информации, в связи с этим следует учитывать и этот фактор.

Основные виды сетей и их топологий

Вообще, единого понятия компьютерной топологии не существует. Принято считать, что может быть несколько видов топологий, в совокупности описывающих ту или иную организацию сети. Собственно, и сети могут быть совершенно разными.

Например, самой простой формой организации соединения нескольких компьютерных терминалов в единое целое можно назвать локальную сеть. Существуют еще промежуточные типы сетей (городские, региональные и т. д.).

Наконец, самыми большим являются глобальные сети, которые затрагивают большие географические регионы и включают в себя все остальные типы сетей, а также компьютеры и телекоммуникационное оборудование.

Но что понимается под топологией локальной сети, как одной из самых простых форм организации соединения нескольких компьютеров между собой, в данном случае?

По признаку описываемых процессов и структур их разделяют на несколько типов:

  • физическая - описание реально существующей структуры расположения компьютеров и узлов сети с учетом связей между ними;
  • логическая - описание прохождения сигнала по сети;
  • информационная - описание движения, направления и перенаправления данных внутри сети;
  • управление обменом - описание принципа использования или передачи прав на пользование сетью.

Топология сети: типы

Теперь несколько слов об общепринятой классификации типов топологий по связям. В контексте того, что такое топология, отдельно стоит отметить еще один тип классификации, описывающий исключительно способ подключения компьютера к сети или принципа его взаимодействия с другими терминалами или основными узлами. В этом случае актуальными становятся понятия полносвязанной и неполносвязанной топологий.

Полносвязанная структура (и это признано во всем мире) является чрезвычайно громоздкой по причине того, что каждый единичный терминал, входящий в единую сетевую структуру, связан со всеми остальными. Неудобство в данном случае заключается в том, что для каждого компьютера необходимо устанавливать дополнительное оборудование связи, а сам терминал должен быть оснащен достаточно большим количеством коммуникационных портов. И как правило, такие структуры если и применяются, то крайне редко.

Неполносвязанная топология в этом плане выглядит намного предпочтительнее, поскольку каждый отдельно взятый терминал не соединяется со всеми остальными компьютерами, а получает или передает информацию через определенные сетевые узлы или обращается напрямую к центральному концентратору или хабу. Яркий тому пример - топология сети «звезда».

Поскольку речь зашла об основных методах объединения терминалов в единое целое (сеть), следует остановиться на основных топологиях всех основных типов, среди которых главными являются «шина», «звезда» и «кольцо», хотя существуют и некоторые смешанные типы.

Топология сети «шина» (bus)

Данный тип объединения терминалов в сеть является достаточно популярным, хотя и имеет весьма серьезные недостатки.

Рассмотреть, что собой представляет топология «шина», можно на простом примере. Представьте себе кабель с несколькими ответвлениями по обе стороны. На конце каждого такого ответвления находится компьютерный терминал. Между собой они напрямую не связаны, а информацию получают и передают через единую магистраль, на обоих концах которой установлены специальные терминаторы, препятствующие отражению сигнала. Это стандартная линейная топология сети.

Преимущество такого соединения состоит в том, что длина основной магистрали существенно уменьшается, и выход единичного терминала из строя на работу сети в целом не оказывает никакого влияния. Главным же недостатком является то, что при нарушениях в работе самой магистрали, неработоспособной оказывается вся сеть. К тому же топология «шина» ограничена в количестве подключаемых рабочих станций и обладает достаточно низкой производительностью ввиду распределения ресурсов между всеми терминалами в сети. Распределение может равномерным или неравномерным.

Топология «звезда» (star)

Топология сети «звезда» в некотором смысле напоминает «шину», с той лишь разницей, что подключение всех терминалов производится не к единой магистрали, а к центральному распределительному устройству (концентратор, хаб).

Как раз через концентратор все компьютеры могут взаимодействовать между собой. Информация передается с хаба на все устройства, но принимается, только теми, которым она предназначается. К преимуществам такого подключения относят возможность всеми терминалами сети, а также подключение новых. Однако, как и в случае с «шиной», выход из строя центрального коммутирующего устройства чреват последствиями для всей сети.

Топология «кольцо» (ring)

Наконец, перед нами еще один тип соединения - кольцевая топология сети. Как, наверное, уже понятно из названия, подключение компьютеров осуществляется последовательно от одного к другому через промежуточные узлы, в результате чего и образуется замкнутый круг (естественно, круг в данном случае - понятие условное).

При передаче информация из начальной точки проходит через все терминалы, которые стоят перед конечным получателем. Но распознавание конечного бенефициара производится на основе маркерного доступа. То есть информацию получает только помеченный в информационном потоке терминал. Такая схема практически нигде не используется в силу того, что выход из строя одного компьютера автоматически влечет за собой нарушение в работе всей сети.

Ячеистая и смешанная топология

Этот тип подключений можно получить, если убрать из вышеприведенных соединений некоторые связи или добавить их дополнительно. В большинстве случаев такая схема используется в крупных сетях.

В связи с этим можно определить несколько основных производных. Самыми распространенными считаются схемы типа «двойное кольцо», «дерево», «решетка», «снежинка», «сеть Клоза» и т. д. Как можно видеть даже из названий, все это вариации на тему основных видов соединений, которые и взяты за основу.

Есть еще и смешанный тип топологии, который может объединять в себе несколько других (подсети), сгруппированных по каким-то характерным признакам.

Заключение

Теперь уже, наверное, понятно, что такое топология. Если сделать некий общий итог, данное понятие представляет собой описание способов соединения компьютеров в сети и взаимодействия между ними. Как это производится, зависит исключительно от метода объединения терминалов в одно целое. И сказать, что сегодня можно выделить какой-то один универсальный вариант подключения, нельзя. В каждом конкретном случае и в зависимости от нужд может использоваться тот или иной тип подключений. Но в локальных сетях, если говорить именно о них, наиболее распространенной является схема «звезда», хотя и «шина» все еще используется достаточно широко.

Остается добавить, что в можно встретить еще понятия централизации и децентрализации, но они большей частью связаны не с подключениями, а с системой управления сетевыми терминалами и осуществлением контроля над ними. Централизация явно выражена в подключениях типа «звезда», но для этого типа применима и децентрализация, обеспечивающая ввод дополнительных элементов с целью повышения надежности сети при выходе центрального коммутатора из строя. Достаточно эффективной разработкой в этом плане является схема «гиперкуб», однако она весьма сложна в разработке.

Сеть - это группа компьютеров, соединенных друг с другом каналом связи. Канал обеспечивает обмен данными внутри сети (то есть обмен данными между компьютерами данной группы). Сеть может состоять из двух-трех компьютеров, а может объединять несколько тысяч ПК. Физически обмен данными между компьютерами может осуществляться по специальному кабелю, телефонной линии, волоконно-оптическому кабелю или по радиоканалу.

Компьютеры в сети можно соединять:

  • · непосредственно друг с другом (так называемое двухточечное соединение);
  • · через промежуточные узлы связи .

Компьютеры, подключенные к сети, могут выполнять две функции: они могут быть рабочими станциями или серверами.

Рабочая станция - это любой рабочий компьютер в сети, не являющийся сервером, как правило, за ними работают пользователи. Требования к рабочим станциям определяются кругом задач станции. Обычно главными требованиями являются требования к быстродействию и к объему оперативной памяти.

Серверы - это компьютеры, которые управляют всей сетью и накапливают у себя все данные рабочих станций. Серверы могут работать в автоматическом режиме - они стоят без клавиатуры и иногда даже без монитора, но в любом случае серверы осуществляют функции управления сетью и концентрации данных. Администратор сети - лицо, в обязанности которого входят все вопросы, связанные с установкой и эксплуатацией сети, а также решение всех проблем, связанных с правами и возможностями пользователей сети.

Обычно в качестве сервера выбирается самый большой и мощный компьютер в сети. Однако развитие компьютерной техники явно ведет к уменьшению внутренних компонентов - компьютер становится быстрее и экономичнее. Поэтому за короткий срок сервер может устареть быстрее, чем обычные компьютеры, к которым не предъявляются такие высокие требования.

Принято различать локальные и глобальные сети. В сущности, главная разница между ними понятна уже по названиям, но есть и некоторые существенные технологические отличия.

Локальные сети (от английского local - местный) - это сети, состоящие из близко расположенных компьютеров, чаще всего находящихся в одной комнате, в одном здании или в близко расположенных зданиях. Локальные компьютерные сети, охватывающие некое предприятие или фирму и объединяющие разнородные вычислительные ресурсы в единой среде, называют корпоративными (от английского corporate - корпоративный, общий). Примеры: банковская сеть, сеть учебного заведения.

Важнейшей характеристикой локальных сетей является скорость передачи данных, поэтому компьютеры соединяются с помощью высокоскоростных адаптеров со скоростью передачи данных не менее 10 Мбит/с. В локальных сетях применяются высокоскоростные цифровые линии связи. Кроме того, локальные сети должны легко адаптироваться, обладать гибкостью: пользователи должны иметь возможность располагать компьютеры, подключенные к сети там, где понадобится, добавлять или перемещать компьютеры или другие устройства, а также по необходимости отключать их без прерываний в работе сети.

Объединение компьютеров в единую сеть предоставляет пользователям сети новые возможности, несравнимые с возможностями отдельных компьютеров. Сеть - это не сложение, а умножение возможностей отдельных компьютеров. Локальная сеть позволяет организовать передачу файлов из одного компьютера в другой или другие, совместно использовать вычислительные и аппаратные ресурсы, совмещать распределенную обработку данных на нескольких компьютерах с централизованным хранением информации и многое другое. С помощью компьютерной локальной сети осуществляется коллективное использование технических ресурсов, что благотворно воздействует на психологию и поведение пользователя не только в сети, но и в реальной жизни.

Топология локальных сетей

Топология - это конфигурация сети, способ соединения элементов сети (то есть компьютеров) друг с другом. Чаще всего встречаются три способа объединения компьютеров в локальную сеть: «звезда», «общая шина» и «кольцо» .

Соединение типа «звезда» (рис. 1). Каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к объединяющему устройству. При необходимости можно объединить вместе несколько сетей с топологией «звезда», при этом конфигурация сети получается разветвленной.

Достоинства: При соединении типа «звезда» легко искать неисправность в сети.

Недостатки: Соединение не всегда надежно, поскольку выход из строя центрального узла может привести к остановке сети.

Соединение «общая шина» (рис. 2). Все компьютеры сети подключаются к одному кабелю; этот кабель используется совместно всеми рабочими станциями по очереди. При таком типе соединения все сообщения, посылаемые каждым отдельным компьютером, принимаются всеми остальными компьютерами в сети.

Достоинства: в топологии «общая шина» выход из строя отдельных компьютеров не приводит всю сеть к остановке.

программный файловый операционный драйвер

Недостатки: несколько труднее найти неисправность в кабеле и при обрыве кабеля (единого для всей сети) нарушается работа всей сети.

Соединение типа «кольцо» (рис. 3). Данные передаются от одного компьютера к другому; при этом если один компьютер получает данные, предназначенные для другого компьютера, то он передает их дальше (по кольцу).

Достоинства: балансировка нагрузки, возможность и удобство прокладки кабеля.

Недостатки: физические ограничения на общую протяженность сети.

От схемы зависит состав оборудования и программного обеспечения. Топологию выбирают, исходя из потребностей предприятия. Если предприятие занимает многоэтажное здание, то в нем может быть применена схема «снежинка» (рис. 4), в которой имеются файловые серверы для разных рабочих групп и один центральный сервер для всего предприятия.

Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи . Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям , в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути.

Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом , надежность работы, возможности расширения сети. И хотя выбирать топологию пользователю сети приходится нечасто, знать об особенностях основных топологий , их достоинствах и недостатках надо.

Существует три базовые топологии сети:

· Шина (bus) - все компьютеры параллельно подключаются к одной линии связи . Информация от каждого компьютера одновременно передается всем остальным компьютерам (рис. 1.5).

Рис. 1.5. Сетевая топология шина

· Звезда (star) - к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи (рис. 1.6). Информация от периферийного компьютера передается только центральному компьютеру, от центрального - одному или нескольким периферийным.

Рис. 1.6. Сетевая топология звезда

· Кольцо (ring) - компьютеры последовательно объединены в кольцо. Передача информации в кольце всегда производится только в одном направлении. Каждый из компьютеров передает информацию только одному компьютеру, следующему в цепочке за ним, а получает информацию только от предыдущего в цепочке компьютера (рис. 1.7).

Рис. 1.7. Сетевая топология кольцо

На практике нередко используют и другие топологии локальных сетей , однако большинство сетей ориентировано именно на три базовые топологии .

Прежде чем перейти к анализу особенностей базовых сетевых топологий , необходимо выделить некоторые важнейшие факторы, влияющие на физическую работоспособность сети и непосредственно связанные с понятием топология .

· Исправность компьютеров (абонентов ), подключенных к сети. В некоторых случаях поломка абонента может заблокировать работу всей сети. Иногда неисправность абонента не влияет на работу сети в целом, не мешает остальным абонентам обмениваться информацией.

· Исправность сетевого оборудования, то есть технических средств, непосредственно подключенных к сети (адаптеры, трансиверы , разъемы и т.д.). Выход из строя сетевого оборудования одного из абонентов может сказаться на всей сети, но может нарушить обмен только с одним абонентом .

· Целостность кабеля сети. При обрыве кабеля сети (например, из-за механических воздействий) может нарушиться обмен информацией во всей сети или в одной из ее частей. Для электрических кабелей столь же критично короткое замыкание в кабеле .

· Ограничение длины кабеля, связанное с затуханием распространяющегося по нему сигнала. Как известно, в любой среде при распространении сигнал ослабляется (затухает). И чем большее расстояние проходит сигнал, тем больше он затухает (рис. 1.8). Необходимо следить, чтобы длина кабеля сети не была больше предельной длины L пр, при превышении которой затухание становится уже неприемлемым (принимающий абонент не распознает ослабевший сигнал).

Рис. 1.8. Затухание сигнала при распространении по сети

Топология шина

Топология шина (или, как ее еще называют, общая шина) самой своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов по доступу к сети. Компьютеры в шине могут передавать информацию только по очереди, так как линия связи в данном случае единственная. Если несколько компьютеров будут передавать информацию одновременно, она исказится в результате наложения (конфликта , коллизии ). В шине всегда реализуется режим так называемого полудуплексного (half duplex ) обмена (в обоих направлениях, но по очереди, а не одновременно).

В топологии шина отсутствует явно выраженный центральный абонент , через которого передается вся информация, это увеличивает ее надежность (ведь при отказе центра перестает функционировать вся управляемая им система). Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины требуется минимальное количество соединительного кабеля по сравнению с другими топологиями .

Поскольку центральный абонент отсутствует, разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента . В связи с этим сетевая аппаратура при топологии шина сложнее, чем при других топологиях . Тем не менее из-за широкого распространения сетей стопологией шина (прежде всего наиболее популярной сети Ethernet) стоимость сетевого оборудования не слишком высока.

Рис. 1.9. Обрыв кабеля в сети с топологией шина

Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать обмен .

Казалось бы, при обрыве кабеля получаются две вполне работоспособные шины (рис. 1.9). Однако надо учитывать, что из-за особенностей распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных согласующих устройств, терминаторов , показанных на рис. 1.5 и 1.9 в виде прямоугольников. Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. В случае разрыва или повреждения кабеля нарушается согласование линии связи , и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Подробнее о согласовании будет изложено в специальном разделе курса. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть.

Отказ сетевого оборудования любого абонента в шине может вывести из строя всю сеть. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи . Причем каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающегоабонента . Это предъявляет дополнительные требования к приемным узлам сетевого оборудования.

Если принять, что сигнал в кабеле сети ослабляется до предельно допустимого уровня на длине L пр, то полная длина шины не может превышать величины L пр. В этом смысле шина обеспечивает наименьшую длину по сравнению с другими базовыми топологиями .

Для увеличения длины сети с топологией шина часто используют несколько сегментов (частей сети, каждый из которых представляет собой шину), соединенных между собой с помощью специальных усилителей и восстановителей сигналов - репитеров или повторителей (на рис. 1.10 показано соединение двух сегментов, предельная длина сети в этом случае возрастает до 2 L пр, так как каждый из сегментов может быть длиной L пр). Однако такое наращивание длины сети не может продолжаться бесконечно. Ограничения на длину связаны с конечной скоростью распространения сигналов по линиям связи .

Рис. 1.10. Соединение сегментов сети типа шина с помощью репитера

Топология звезда

Звезда - это единственная топология сети с явно выделенным центром, к которому подключаются все остальные абоненты . Обмен информацией идет исключительно через центральный компьютер, на который ложится большая нагрузка, поэтому ничем другим, кроме сети, он, как правило, заниматься не может. Понятно, что сетевое оборудование центрального абонента должно быть существенно более сложным, чем оборудование периферийных абонентов . О равноправии всех абонентов (как в шине) в данном случае говорить не приходится. Обычно центральный компьютер самый мощный, именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, так как управление полностью централизовано.

Если говорить об устойчивости звезды к отказам компьютеров, то выход из строя периферийного компьютера или его сетевого оборудования никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. В связи с этим должны приниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры.

Обрыв кабеля или короткое замыкание в нем при топологии звезда нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.

В отличие от шины, в звезде на каждой линии связи находятся только два абонента : центральный и один из периферийных. Чаще всего для их соединения используется две линии связи , каждая из которых передает информацию в одном направлении, то есть на каждой линии связи имеется только один приемник и один передатчик. Это так называемая передача точка-точка . Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных, внешних терминаторов .

Проблема затухания сигналов в линии связи также решается в звезде проще, чем в случае шины, ведь каждый приемник всегда получает сигнал одного уровня. Предельная длина сети с топологией звезда может быть вдвое больше, чем в шине (то есть 2 L пр), так как каждый из кабелей, соединяющий центр с периферийнымабонентом , может иметь длину L пр.

Серьезный недостаток топологии звезда состоит в жестком ограничении количества абонентов . Обычно центральный абонент может обслуживать не более 8-16 периферийных абонентов . В этих пределах подключение новых абонентов довольно просто, но за ними оно просто невозможно. В звезде допустимо подключение вместо периферийного еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд).

Звезда, показанная на рис. 1.6, носит название активной или истинной звезды. Существует также топология , называемая пассивной звездой, которая только внешне похожа на звезду (рис. 1.11). В настоящее время она распространена гораздо более широко, чем активная звезда. Достаточно сказать, что она используется в наиболее популярной сегодня сети Ethernet.

В центре сети с данной топологией помещается не компьютер, а специальное устройство - концентратор или, как его еще называют, хаб (hub), которое выполняет ту же функцию, что и репитер , то есть восстанавливает приходящие сигналы и пересылает их во все другие линии связи .

Рис. 1.11. Топология пассивная звезда и ее эквивалентная схема

Получается, что хотя схема прокладки кабелей подобна истинной или активной звезде, фактически речь идет о шинной топологии , так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а никакого центрального абонента не существует. Безусловно, пассивная звезда дороже обычной шины, так как в этом случае требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды, в частности, упрощает обслуживание и ремонт сети. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную звезду, которая считается малоперспективной топологией .

Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретранслирует поступающие на него сигналы, но и производит управление обменом , однако сам в обмене не участвует (так сделано в сети 100VG-AnyLAN ).

Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шиннойтопологии ), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два (каждый кабель передает в одном из двух встречных направлений), причем последнее встречается гораздо чаще.

Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях , расход кабеля. Например, если компьютеры расположены в одну линию (как на рис. 1.5), то при выборе топологии звезда понадобится в несколько раз больше кабеля, чем притопологии шина. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

Топология кольцо

Кольцо - это топология , в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передает. На каждой линии связи , как и в случае звезды, работает только один передатчик и один приемник (связь типа точка-точка). Это позволяет отказаться от применения внешних терминаторов .

Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает, усиливает) приходящий к нему сигнал, то есть выступает в роли репитера. Затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Если предельная длина кабеля, ограниченная затуханием, составляет L пр, то суммарная длина кольца может достигать NL пр, где N - количество компьютеров в кольце. Полный размер сети в пределе будет NL пр /2, так как кольцо придется сложить вдвое. На практике размеры кольцевых сетей достигают десятков километров (например, в сети FDDI ). Кольцо в этом отношении существенно превосходит любые другие топологии .

Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако довольно часто в кольце выделяется специальный абонент , который управляет обменом или контролирует его. Понятно, что наличие такого единственного управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен .

Строго говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии ). Ведь один из них обязательно получает информацию от компьютера, ведущего передачу в данный момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на кольцо. В таких методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в кольцо выполняется достаточно просто, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае шины, максимальное количество абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно обладает высокой устойчивостью к перегрузкам, обеспечивает уверенную работу с большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды), который может быть перегружен большими потоками информации.

Рис. 1.12. Сеть с двумя кольцами

Сигнал в кольце проходит последовательно через все компьютеры сети, поэтому выход из строя хотя бы одного из них (или же его сетевого оборудования) нарушает работу сети в целом. Это существенный недостаток кольца.

Точно так же обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Из трех рассмотренных топологий кольцо наиболее уязвимо к повреждениям кабеля, поэтому в случае топологии кольца обычно предусматривают прокладку двух (или более) параллельных линий связи , одна из которых находится в резерве.

Иногда сеть с топологией кольцо выполняется на основе двух параллельных кольцевых линий связи , передающих информацию в противоположных направлениях (рис. 1.12). Цель подобного решения - увеличение (в идеале - вдвое) скорости передачи информации по сети. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится).

Другие топологии

Кроме трех рассмотренных базовых топологий нередко применяется также сетевая топология дерево (tree), которую можно рассматривать как комбинацию нескольких звезд. Причем, как и в случае звезды, дерево может быть активным или истинным (рис. 1.13) и пассивным (рис. 1.14). При активном дереве в центрах объединения нескольких линий связи находятся центральные компьютеры, а при пассивном - концентраторы (хабы ).

Рис. 1.13. Топология активное дерево

Рис. 1.14. Топология пассивное дерево. К - концентраторы

Довольно часто применяются комбинированные топологии , среди которых наиболее распространены звездно-шинная (рис. 1.15) и звездно-кольцевая (рис. 1.16).

Рис. 1.15. Пример звездно-шинной топологии

Рис. 1.16. Пример звездно-кольцевой топологии

В звездно-шинной (star-bus) топологии используется комбинация шины и пассивной звезды. К концентратору подключаются как отдельные компьютеры, так и целые шинные сегменты. На самом деле реализуется физическая топология шина, включающая все компьютеры сети. В данной топологии может использоваться и несколько концентраторов, соединенных между собой и образующих так называемую магистральную, опорную шину. К каждому из концентраторов при этом подключаются отдельные компьютеры или шинные сегменты. В результате получается звездно-шинное дерево. Таким образом, пользователь может гибко комбинировать преимущества шинной и звездной топологий , а также легко изменять количество компьютеров, подключенных к сети. С точки зрения распространения информации данная топология равноценна классической шине.

В случае звездно-кольцевой (star-ring) топологии в кольцо объединяются не сами компьютеры, а специальные концентраторы (изображенные на рис. 1.16 в виде прямоугольников), к которым в свою очередь подключаются компьютеры с помощью звездообразных двойных линий связи . В действительности все компьютеры сети включаются в замкнутое кольцо, так как внутри концентраторов линии связи образуют замкнутый контур (как показано на рис. 1.16). Данная топология дает возможность комбинировать преимущества звездной и кольцевой топологий . Например, концентраторы позволяют собрать в одно место все точки подключения кабелей сети. Если говорить о распространении информации, данная топология равноценна классическому кольцу.

В заключение надо также сказать о сеточной топологии (mesh), при которой компьютеры связываются между собой не одной, а многими линиями связи , образующими сетку (рис. 1.17).

Рис. 1.17. Сеточная топология: полная (а) и частичная (б)

В полной сеточной топологии каждый компьютер напрямую связан со всеми остальными компьютерами. В этом случае при увеличении числа компьютеров резко возрастает количество линий связи . Кроме того, любое изменение в конфигурации сети требует внесения изменений в сетевую аппаратуру всех компьютеров, поэтому полная сеточная топология не получила широкого распространения.

Частичная сеточная топология предполагает прямые связи только для самых активных компьютеров, передающих максимальные объемы информации. Остальные компьютеры соединяются через промежуточные узлы. Сеточная топология позволяет выбирать маршрут для доставки информации от абонента к абоненту , обходя неисправные участки. С одной стороны, это увеличивает надежность сети, с другой же – требует существенного усложнения сетевой аппаратуры, которая должна выбирать маршрут.

Топология локальных сетей.

Состав и конфигурация сетевой аппаратуры в зависимости от топологии сети.

1. Понятие топологии сети

Общая схема соединения компьютеров в локальные сети называется топологией сети

Топология - это физическая конфигурация сети в совокупности с ее логическими характеристиками. Топология - это стандартный термин, который используется при описании основной компоновки сети. Если понять, как используются различные топологии, то можно будет определить, какими возможностями обладают различные типы сетей.

Существует два основных типа топологий:

  • физическая
  • логическая

Логическая топология описывает правила взаимодействия сетевых станций при передаче данных.

Физическая топология определяет способ соединения носителей данных.

Термин "топология сети" характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология физических связей может принимать разные «геометрические» формы, при этом существенным является не геометрическое расположение кабеля, а лишь наличие связи между узлами (замкнутость/незамкнутость, наличие центра и т.д.).

Топология сети обуславливает ее характеристики.

Выбор той или иной топологии влияет на:

  • состав необходимого сетевого оборудования
  • характеристики сетевого оборудования
  • возможности расширения сети
  • способ управления сетью

Конфигурация сети может быть или децентрализованной (когда кабель "обегает" каждую станцию в сети), или централизованной (когда каждая станция физически подключается к некоторому центральному устройству, распределяющему фреймы и пакеты между станциями). Примером централизованной конфигурации является звезда с рабочими станциями, располагающимися на концах ее лучей. Децентрализованная конфигурация похожа на цепочку альпинистов, где каждый имеет свое положение в связке, а все вместе соединены одной веревкой. Логические характеристики топологии сети определяют маршрут, проходимый пакетом при передаче по сети.

При выборке топологии нужно учитывать, чтобы она обеспечивала надежную и эффективную работу сети, удобное управление потоками сетевых данных. Желательно также, чтобы сеть по стоимости создания и сопровождения получилась недорогой, но в то же время оставались возможности для ее дальнейшего расширения и, желательно, для перехода к более высокоскоростным технологиям связи. Это непростая задача! Чтобы ее решить, необходимо знать, какие бывают сетевые топологии.

По топологии связей различают:

  • сети с топологией "общая шина (шина) ";
  • сети с топологией "звезда";
  • сети с топологией "кольцо"»;
  • сети с древовидной топологией;
  • сети со смешанной топологией

2. Базовые топологии сети

Существует три базовые топологии, на основе которых строится большинство сетей.

  • шина (bus)
  • звезда (star)
  • кольцо (ring)

"Шиной" называется топология, в которой компьютеры подключены вдоль одного кабеля.

"Звездой" называется топология, в которой компьютеры подключены к сегментам кабеля, исходящим из одной точки, или концентратора.

"Кольцом" называется топология, если кабель, к которому подключены компьютеры, замкнут в кольцо.

Хотя сами по себе базовые топологии несложны, в реальности часто встречаются довольно сложные комбинации, объединяющие свойства нескольких топологий.

2.1 Топология сети типа "шина" (bus)

В этой топологии все компьютеры соединяются друг с другом одним кабелем. Каждый компьютер присоединяется к общему кабелю, на концах которого устанавливаются терминаторы. Сигнал проходит по сети через все компьютеры, отражаясь от конечных терминаторов.

Схема топологии сети тип "шина"

Топология "шина" порождается линейной структурой связей между узлами. Аппаратно такая топология может быть реализована, например, путём установки на центральные компьютеры двух сетевых адаптеров. В целях предотвращения отражения сигнала на концах кабеля должны быть установлены терминаторы, поглощающие сигнал.

В сети с топологией "шина" компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов - аппаратных MAC-адресов. Чтобы понять процесс взаимодействия компьютеров по шине, нужно уяснить следующие понятия:

  • передача сигнала
  • отражение сигнала
  • терминатор

1. Передача сигнала

Данные в виде электрических сигналов, передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени только один компьютер может вести передачу. Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть. Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Ибо, кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

  • характеристики аппаратного обеспечения компьютеров в сети
  • частота, с которой компьютеры передают данные
  • тип работающих сетевых приложений
  • тип сетевого кабеля
  • расстояние между компьютерами в сети

Шина - пассивная топология. Это значит, что компьютеры только "слушают" передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

2. Отражение сигнала

Данные, или электрические сигналы, распространяются по всей сети - от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

3. Терминатор

Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают заглушки (терминаторы, terminators), поглощающие эти сигналы. Все концы сетевого кабеля должны быть к чему-нибудь подключены, например к компьютеру или к баррел-коннектору - для увеличения длины кабеля. К любому свободному (неподключенному ни к чему) концу кабеля должен быть подсоединен терминатор, чтобы предотвратить отражение электрических сигналов.

Установка терминатора

Нарушение целостности сети может произойти, если разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть "падает". Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

У такой топологии сети есть достоинства и недостатки.

Достоинств топологии "шина":

  • небольшое время установки сети
  • дешевизна (требуется меньше кабеля и сетевых устройств)
  • простота настройки
  • выход из строя рабочей станции не отражается на работе сети

Недостатки топологии "шина":

  • такие сети трудно расширять (увеличивать число компьютеров в сети и количество сегментов - отдельных отрезков кабеля, их соединяющих).
  • поскольку шина используется совместно, в каждый момент времени передачу может вести только один из компьютеров.
  • "шина" является пассивной топологией - компьютеры только "слушают" кабель и не могут восстанавливать затухающие при передаче по сети сигналы.
  • надежность сети с топологией "шина" невысока. Когда электрический сигнал достигает конца кабеля, он (если не приняты специальные меры) отражается, нарушая работу всего сегмента сети.

Проблемы, характерные для топологии "шина", привели к тому, что эти сети сейчас уже практически не используются.

Топология сети типа "шина" известна как логическая топология Ethernet 10 Мбит/с.

2.2 Базовая топология сети типа "звезда" (star)

При топологии "звезда" все компьютеры подключаются к центральному компоненту, именуемому концентратором (hub). Каждый компьютер подсоединяется к сети при помощи отдельного соединительного кабеля. Сигналы от передающего компьютера поступают через концентратор ко всем остальным.

В «звезде» всегда есть центр, через который проходит любой сигнал в сети. Функции центрального звена выполняют специальные сетевые устройства, причём передача сигнала в них может идти по-разному: в одних случаях устройство направляет данные всем узлам, кроме узла-отправителя, в других устройство анализирует, какому узлу предназначаются данные и направляет их только ему.

Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.

Схема топологии сети типа "звезда"

Достоинства типологии "звезда":

  • выход из строя одной рабочей станции не отражается на работе всей сети в целом
  • хорошая масштабируемость сети
  • лёгкий поиск неисправностей и обрывов в сети
  • высокая производительность сети (при условии правильного проектирования)
  • гибкие возможности администрирования

Недостатки типологии "звезда":

  • выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом
  • для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий
  • конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

Одна из наиболее распространённых топологий, поскольку проста в обслуживании. В основном используется в сетях, где носителем выступает кабель витая пара. UTP категория 3 или 5. (Категории кабеля «витая пара», которые нумеруются от 1 до 7 и определяют эффективный пропускаемый частотный диапазон. Кабель более высокой категории обычно содержит больше пар проводов и каждая пара имеет больше витков на единицу длины).

Топология типа "звезда" нашла свое отражение в технологии Fast Ethernet6.

2.3 Базовая топология сети типа "кольцо" (ring)

При топологии "кольцо" компьютеры подключаются к кабелю, замкнутому в кольцо. Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии "шина", здесь каждый компьютер выступает в роли репитера (повторителя), усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.

Схема сети типа "кольцо"

Функционирование замкнутой топологии «кольцо» основано на передаче маркера.

Маркер – пакет данных, разрешающий компьютеру передавать данные в сеть.

Маркер последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который "хочет" передать данные. Компьютер, желающий начать передачу, «захватывает» маркер, изменяет его, помещает адрес получателя в данные и посылает их по кольцу получателю.

Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя, указанным в данных. После этого принимающий компьютер посылает передающему сообщение, где подтверждает факт приёма данных. Получив подтверждение, передающий компьютер создаёт новый маркер и возвращает его в сеть.

На первый взгляд, кажется, что передача маркера отнимает много времени, однако на самом деле маркер передвигается практически со скоростью света. В кольце диаметром 200 метров маркер может циркулировать с частотой 10 000 оборотов в секунду.

Достоинства топологии "кольцо":

  • простота установки
  • практически полное отсутствие дополнительного оборудования
  • возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки топологии "кольцо":

  • выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети
  • сложность конфигурирования и настройки
  • сложность поиска неисправностей

Наиболее широкое применение получила в оптоволоконных сетях. Используется в стандартах FDDI8, Token ring9.

3. Другие возможные сетевые топологии

Реальные компьютерные сети постоянно расширяются и модернизируются. Поэтому почти всегда такая сеть является гибридной, т.е. ее топология представляет собой комбинацию нескольких базовых топологий. Легко представить себе гибридные топологии, являющиеся комбинацией "звезды" и "шины", либо "кольца" и "звезды".

3.1 Топология сети типа "дерево" (tree)

Топологию "дерево" (tree), можно рассматривать как объединение нескольких "звезд". Именно эта топология сегодня является наиболее популярной при построении локальных сетей.

Схема топологии сети типа "дерево"

В древовидной топологии есть корень дерева, от которого произрастают ветви и листья.

Дерево может быть активным или истинным и пассивным. При активном дереве в центрах объединения нескольких линий связи находятся центральные компьютеры, а при пассивном - концентраторы (хабы).

Рисунок 6 - Схема топологии сети типа "активное дерево"

Рисунок 7 - Схема топологии сети типа "пассивное дерево"

3.2 Комбинированные топологии сети

Довольно часто применяются комбинированные топологии, среди них наиболее распространены звездно-шинная и звездно-кольцевая.

В звездно-шинной (star-bus) топологии используется комбинация шины и пассивной звезды.

Схема комбинированной топологии сети типа "star-bus"

К концентратору подключаются как отдельные компьютеры, так и целые шинные сегменты. На самом деле реализуется физическая топология шина, включающая все компьютеры сети. В данной топологии может использоваться и несколько концентраторов, соединенных между собой и образующих так называемую магистральную, опорную шину. К каждому из концентраторов при этом подключаются отдельные компьютеры или шинные сегменты. В результате получается звездно-шинное дерево. Таким образом, пользователь может гибко комбинировать преимущества шинной и звездной топологий, а также легко изменять количество компьютеров, подключенных к сети. С точки зрения распространения информации данная топология равноценна классической шине.

В случае звездно-кольцевой (star-ring) топологии в кольцо объединяются не сами компьютеры, а специальные концентраторы, к которым в свою очередь подключаются компьютеры с помощью звездообразных двойных линий связи.

Схема комбинированной топологии сети типа "star-ring"

В действительности все компьютеры сети включаются в замкнутое кольцо, так как внутри концентраторов линии связи образуют замкнутый контур (как показано на рисунке 9). Данная топология дает возможность комбинировать преимущества звездной и кольцевой топологий. Например, концентраторы позволяют собрать в одно место все точки подключения кабелей сети. Если говорить о распространении информации, данная топология равноценна классическому кольцу.

3.3 "Сеточная" топология сети

Наконец, следует упомянуть о сетчатой, или сеточной (mesh) топологии, в которой все либо многие компьютеры и другие устройства соединены друг с другом напрямую (рисунок 10).

Рисунок 10 - Схема сеточной топологии сети

Такая топология исключительно надежна - при обрыве любого канала передача данных не прекращается, поскольку возможно несколько маршрутов доставки информации. Сеточные топологии (чаще всего не полные, а частичные) используются там, где требуется обеспечить максимальную отказоустойчивость сети, например, при объединении нескольких участков сети крупного предприятия или при подключении к Интернету, хотя за это, конечно, приходится платить: существенно увеличивается расход кабеля, усложняется сетевое оборудование и его настройка.

В настоящее время, подавляющее большинство современных сетей используют топологию "звезда" или гибридную топологию, представляющую собой объединение нескольких "звезд" (например, топологию типа "дерево"), и метод доступа к среде передачи CSMA/CD (множественный доступ с контролем несущей и обнаружением столкновений).

Фрагмент вычислительной сети

Фрагмент вычислительной сети включает основные типы коммуникационного оборудования, применяемого сегодня для образования локальных сетей и соединения их через глобальные связи друг с другом. Для построения локальных связей между компьютерами используются различные виды кабельных систем, сетевые адаптеры, концентраторы-повторители, мосты, коммутаторы и маршрутизаторы. Для подключения локальных сетей к глобальным связям используются специальные выходы (WAN порты) мостов и маршрутизаторов, а также аппаратура передачи данных по длинным линиям – модемы (при работе по аналоговым линиям) или же устройства подключения к цифровым каналам (TA – терминальные адаптеры сетей ISDN, устройства обслуживания цифровых выделенных каналов типа CSU/DSU и т.п.).

— это способ описания конфигурации сети, схема расположения и соединения сетевых устройств. Топология сети позволяет увидеть всю ее структуру, сетевые устройства, входящие в сеть, и их связь между собой.

Выделяют несколько видов топологий: физическую, логическую, информационную и топологию управления обменом. В этой статье мы поговорим о физической топологии сети, которая описывает реальное расположение и связи между узлами локальной сети.

Выделяют несколько основных видов физических топологий сетей:

  1. Шинная топология сети — топология, при которой все компьютеры сети подключаются к одному кабелю, который используется совместно всеми рабочими станциями. При такой топологии выход из строя одной машины не влияет на работу всей сети в целом. Недостаток же заключается в том, что при выходе из строя или обрыве шины нарушается работа всей сети.
  2. Топология сети «Звезда» — топология, при которой все рабочие станции имеют непосредственное подключение к серверу, являющемуся центром "звезды". При такой схеме подключения, запрос от любого сетевого устройства направляется прямиком к серверу, где он обрабатывается с различной скоростью, зависящей от аппаратных возможностей центральной машины. Выход из строя центральной машины приводит к остановке всей сети. Выход же из строя любой другой машины на работу сети не влияет.
  3. Кольцевая топология сети — схема, при которой все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется с входом другого. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении. Такая топология сети не требует установки дополнительного оборудования (сервера или хаба), но при выходе из строя одного компьютера останавливается и работа всей сети.
  4. Ячеистая топология сети — топология, при которой каждая рабочая станция соединяется со всеми другими рабочими станциями этой же сети. Каждый компьютер имеет множество возможных путей соединения с другими компьютерами. Поэтому обрыв кабеля не приведет к потере соединения между двумя компьютерами. Эта топология сети допускает соединение большого количества компьютеров и характерна, как правило, для крупных сетей.
  5. При смешанной топологии применяются сразу несколько видов соединения компьютеров между собой. Встречается она достаточно редко в особо крупных компаниях и организациях.

Для чего нужно знать виды топологий и все их минусы и плюсы? От схемы сети зависит состав оборудования и программного обеспечения. Топологию выбирают, исходя из потребностей предприятия. Кроме того, знание топологии сети позволяет оценивать ее слабые места, а также зависимость стабильности ее работы от отдельных составляющих, тщательнее планировать последующие подключения нового сетевого оборудования и ПК. В случае какого-то сбоя, отсутствия связи с каким-либо компьютером сети, на карте всегда можно посмотреть, где данное устройство располагается, на каком этаже, в каком офисе или помещении, на что, прежде всего, нужно обратить внимание и куда идти в первую очередь для устранения неисправности.

И тут мы подошли к одному из ключевых вопросов, интересующих всех системных администраторов, а именно: как нарисовать схему сети с минимальными затратами времени, сил и средств? Если сеть велика и состоит из десятков серверов, сотен компьютеров и еще множества других сетевых устройств (принтеров, свитчей и т.д.), даже опытному системному администратору (не говоря уже о новичке) очень сложно быстро разобраться во всех связях между сетевым оборудованием. О создании топологии сети вручную тут и речи быть не может. К счастью, современный рынок ПО предлагает специальные программы для автоматического исследования и построения схемы сети. Это позволяет системному администратору узнать, где и какое оборудование находится, не прибегая к ручному исследованию проводов.

Таким образом, даже если вы в компании новичок, и предыдущий сисадмин не горел большим желанием «сдавать» вам сеть по всем правилам, программы рисования топологии сети позволят вам быстро включиться в работу и начать ее с построения схемы вашей сети.