Где стоит сетевая карта в компьютере. Сетевые карты для компьютера: что может предложить современный рынок оборудования для ПК. Как узнать какая у меня сетевая карта на Windows XP

Компьютер – супер умная вещь. Но без специальной платы, именуемой сетевой картой, которая стоит на материнской плате, не сможет выйти в интернет. Очень часто, переустанавливая операционную систему или когда возникают проблемы с сетью, на первый план выходит определение модели сетевой карты. Так как же узнать модель сетевой карты?

Тогда необходимы, кроме самого компьютера, сетевая карта, утилита Everest и возможность доступа в интернет.
Что такое утилита, пользователь должен знать. Но уточнение не помешает — это программа, решающая вспомогательные задачи. Классифицировать утилиты можно так: утилиты сервисного обслуживания компьютера; утилиты для расширения функций; утилиты информационные.

  • щелкнув на «Администрирование» в «Панели управления» открыть окно «Управление компьютером»;
  • перейти на «Диспетчер устройств»;
  • щелкнуть по знаку «плюс» рядом со строкой «Сетевые платы» и открыть список карт, которые установлены;

  • набрав «Cmd» в графе «Выполнить», запустить командную строку;
  • откроется окно и в него ввести команду «ipconfig/all».

Как только команда будет выполнена, на мониторе появится информация о сетевых платах, установленных на компьютере.

Как узнать модель сетевой карты, осматриваем пациента

Возможно, что система не определит сетевую карту. Нет на нее и драйверов. Тогда имеет смысл перейти к визуальному определению модели карты.

Придется сетевую карту извлечь из слота, а данные на маркировке производителя ввести в поисковик, причем, любой, в интернете.

Смотрим ID оборудования

Модель сетевой карты можно определить по «Vendor ID» и «Device ID». Данные вводятся во время загрузки BIOS. Можно воспользоваться утилитой Everest. Для этого устанавливается утилита, открывается программное окно и делается переход на вкладку «Устройство». Дальше в правом верхнем окне следует развернуть вкладку «Unknown», которая стоит со знаком вопроса. Необходимо щелкнуть по знаку, стоящему у строки «Сетевой контролер». Тогда в нижнем окне можно будет увидеть «Аппаратный ID» и значения VEN и DEV. VEN- это код, который идентифицирует производителя. За идентификацию устройства отвечает код DEV. По этим кодам программа и определит устройство, а информацию выведет на монитор.

Определить модель сетевой карты по «Device ID» и «Vendor ID». Эти данные выводятся при загрузке BIOS или же можно использовать утилиту Everest. Установите утилиту, откройте окно программы и перейдите на вкладку «Устройства». Разверните вкладку «Unknown» в правом верхнем окне, помеченную знаком вопроса. Щелкните по этому знаку, расположенному у строки «Сетевой контроллер». В нижнем окне появится «Аппаратный ID» со значениями VEN и DEV. VEN является кодом, идентифицирующим производителя, а DEV – устройство. Программа по этим кодам определяет устройство и выводит информацию на монитор.

Если есть необходимость срочно узнать о модели и производителе, тогда надо, используя Vendor ID и Device ID, найти сайт www.Pcidatabase.com. Тут просто вводятся полученные данные в соответствующие поля.

Очень простое решение!

Легко и просто посмотреть на чек или гарантийный талон, если сетевая плата новая и уже внедрена в компьютер. При условии, что оригинальная коробка от устройства предусмотрительно хранится. Кстати, о том, чтобы не выбрасывать всю компьютерную упаковку примерно год, напомнит при покупке продавец консультант. Другое дело, прислушаться к такому совету. Как показывает практика, прислушаться стоит. Итак, имея гарантийный талон, всегда можно прочесть полное имя-название и модели устройства, и компании-изготовителя.

P.S. Вот мы с вами и ответили на вопрос о том, как узнать модель сетевой карты… как видите все просто, а какой вариант к вам подходит лучше — это уже ваш выбор 😉

Вконтакте

Сетевая плата , также известная как сетевая карта, сетевой адаптер, Ethernet-адаптер, NIC (англ. network interface card) - периферийное устройство, позволяющее компьютеру взаимодействовать с другими устройствами сети. В настоящее время, особенно в персональных компьютерах, сетевые платы довольно часто интегрированы в материнские платы для удобства и удешевления всего компьютера в целом.

Типы

По конструктивной реализации сетевые платы делятся на:

  • внутренние - отдельные платы, вставляющиеся в ISA, PCI или PCI-E слот;
  • внешние, подключающиеся через USB или PCMCIA интерфейс, преимущественно использующиеся в ноутбуках;
  • * встроенные в материнскую плату.

На 10-мегабитных сетевых платах для подключения к локальной сети используются 3 типа разъёмов:

  • 8P8C для витой пары;
  • BNC-коннектор для тонкого коаксиального кабеля;
  • 15-контактный разъём AUI трансивера для толстого коаксиального кабеля.
  • оптический разъём (en:10BASE-FL и другие стандарты 10 Мбит Ethernet)
Эти разъёмы могут присутствовать в разных комбинациях, иногда даже все три сразу, но в любой данный момент работает только один из них.

На 100-мегабитных платах устанавливают либо разъём для витой пары (8P8C, ошибочно называемый RJ-45, либо оптический разъем (SC, ST, MIC).

Рядом с разъёмом для витой пары устанавливают один или несколько информационных светодиодов, сообщающих о наличии подключения и передаче информации.

Одной из первых массовых сетевых карт стала серия NE1000/NE2000 фирмы Novell с разъемом BNC.

Параметры сетевого адаптера

При конфигурировании карты сетевого адаптера могут быть доступны следующие параметры:

  • номер линии запроса на аппаратное прерывание IRQ
  • номер канала прямого доступа к памяти DMA (если поддерживается)
  • базовый адрес ввода/вывода
  • базовый адрес памяти ОЗУ (если используется)
  • поддержка стандартов автосогласования дуплекса/полудуплекса, скорости
  • поддержка теггрированных пакетов VLAN (802.1q) с возможностью фильтрации пакетов заданного VLAN ID
  • параметры WOL (Wake-on-LAN)
  • функция Auto-MDI/MDI-X автоматический выбор режима работы по прямой либо перекрестной обжимке витой пары

В зависимости от мощности и сложности сетевой карты она может реализовывать вычислительные функции (преимущественно подсчёт и генерацию контрольных сумм кадров) аппаратно либо программно (драйвером сетевой карты с использованием центрального процессора).

Серверные сетевые карты могут поставляться с двумя (и более) сетевыми разъёмами. Некоторые сетевые карты (встроенные в материнскую плату) также обеспечивают функции межсетевого экрана (например, nforce).

Функции и характеристики сетевых адаптеров

Сетевой адаптер (Network Interface Card (или Controller), NIC) вместе со своим драйвером реализует второй, канальный уровень модели открытых систем в конечном узле сети - компьютере. Более точно, в сетевой операционной системе пара адаптер и драйвер выполняет только функции физического и МАС-уровней, в то время как LLC-уровень обычно реализуется модулем операционной системы, единым для всех драйверов и сетевых адаптеров. Собственно так оно и должно быть в соответствии с моделью стека протоколов IEEE 802. Например, в ОС Windows NT уровень LLC реализуется в модуле NDIS, общем для всех драйверов сетевых адаптеров, независимо от того, какую технологию поддерживает драйвер.

Сетевой адаптер совместно с драйвером выполняют две операции: передачу и прием кадра. Передача кадра из компьютера в кабель состоит из перечисленных ниже этапов (некоторые могут отсутствовать, в зависимости от принятых методов кодирования):

  • Оформление кадра данных МАС-уровня, в который инкапсулируется кадр LLC (с отброшенными флагами 01111110). Заполнение адресов назначения и источника, вычисление контрольной суммы.Прием кадра данных LLC через межуровневый интерфейс вместе с адресной информацией МАС-уровня. Обычно взаимодействие между протоколами внутри компьютера происходит через буферы, расположенные в оперативной памяти. Данные для передачи в сеть помещаются в эти буферы протоколами верхних уровней, которые извлекают их из дисковой памяти либо из файлового кэша с помощью подсистемы ввода/вывода операционной системы.
  • Формирование символов кодов при использовании избыточных кодов типа 4В/5В. Скрэмблирование кодов для получения более равномерного спектра сигналов. Этот этап используется не во всех протоколах - например, технология Ethernet 10 Мбит/с обходится без него.
  • Выдача сигналов в кабель в соответствии с принятым линейным кодом - манчестерским, NRZ1. MLT-3 и т. п.
Прием из кабеля сигналов, кодирующих битовый поток.Прием кадра из кабеля в компьютер включает следующие действия:
  • Выделение сигналов на фоне шума. Эту операцию могут выполнять различные специализированные микросхемы или сигнальные процессоры DSP. В результате в приемнике адаптера образуется некоторая битовая последовательность, с большой степенью вероятности совпадающая с той, которая была послана передатчиком.
  • Если данные перед отправкой в кабель подвергались скрэмблированию, то они пропускаются через дескрэмблер, после чего в адаптере восстанавливаются символы кода, посланные передатчиком.
  • Проверка контрольной суммы кадра. Если она неверна, то кадр отбрасывается, а через межуровневый интерфейс наверх, протоколу LLC передается соответствующий код ошибки. Если контрольная сумма верна, то из МАС-кадра извлекается кадр LLC и передается через межуровневый интерфейс наверх, протоколу LLC. Кадр LLC помещается в буфер оперативной памяти.

Распределение обязанностей между сетевым адаптером и его драйвером стандартами не определяется, поэтому каждый производитель решает этот вопрос самостоятельно. Обычно сетевые адаптеры делятся на адаптеры для клиентских компьютеров и адаптеры для серверов.

В адаптерах для клиентских компьютеров значительная часть работы перекладывается на драйвер, тем самым адаптер оказывается проще и дешевле. Недостатком такого подхода является высокая степень загрузки центрального процессора компьютера рутинными работами по передаче кадров из оперативной памяти компьютера в сеть. Центральный процессор вынужден заниматься этой работой вместо выполнения прикладных задач пользователя.

Поэтому адаптеры, предназначенные для серверов, обычно снабжаются собственными процессорами, которые самостоятельно выполняют большую часть работы по передаче кадров из оперативной памяти в сеть и в обратном направлении. Примером такого адаптера может служить сетевой адаптер SMC EtherPower со встроенным процессором Intel i960.

В зависимости от того, какой протокол реализует адаптер, адаптеры делятся на Ethernet-адаптеры, Token Ring-адаптеры, FDDI-адаптеры и т. д. Так как протокол Fast Ethernet позволяет за счет процедуры автопереговоров автоматически выбрать скорость работы сетевого адаптера в зависимости от возможностей концентратора, то многие адаптеры Ethernet сегодня поддерживают две скорости работы и имеют в своем названии приставку 10/100. Это свойство некоторые производители называют авточувствительностью.

Сетевой адаптер перед установкой в компьютер необходимо конфигурировать. При конфигурировании адаптера обычно задаются номер прерывания IRQ, используемого адаптером, номер канала прямого доступа к памяти DMA (если адаптер поддерживает режим DMA) и базовый адрес портов ввода/вывода.

Если сетевой адаптер, аппаратура компьютера и операционная система поддерживают стандарт Plug-and-Play, то конфигурирование адаптера и его драйвера осуществляется автоматически. В противном случае нужно сначала сконфигурировать сетевой адаптер, а затем повторить параметры его конфигурации для драйвера. В общем случае, детали процедуры конфигурирования сетевого адаптера и его драйвера по многом зависят от производителя адаптера, а также от возможностей шины, для которой разработан адаптер.

Классификация сетевых адаптеров

В качестве примера классификации адаптеров используем подход фирмы 3Com. Фирма 3Com считает, что сетевые адаптеры Ethernet прошли в своем развитии три поколения.

Первое поколение

Адаптеры первого поколения были выполнены на дискретных логических микросхемах, в результате чего обладали низкой надежностью. Они имели буферную память только на один кадр, что приводило к низкой производительности адаптера, так как все кадры передавались из компьютера в сеть или из сети в компьютер последовательно. Кроме этого, задание конфигурации адаптера первого поколения происходило вручную, с помощью перемычек. Для каждого типа адаптеров использовался свой драйвер, причем интерфейс между драйвером и сетевой операционной системой не был стандартизирован.

Второе поколение

В сетевых адаптерах второго поколения для повышения производительности стали применять метод многокадровой буферизации. При этом следующий кадр загружается из памяти компьютера в буфер адаптера одновременно с передачей предыдущего кадра в сеть. В режиме приема, после того как адаптер полностью принял один кадр, он может начать передавать этот кадр из буфера в память компьютера одновременно с приемом другого кадра из сети.

В сетевых адаптерах второго поколения широко используются микросхемы с высокой степенью интеграции, что повышает надежность адаптеров. Кроме того, драйверы этих адаптеров основаны на стандартных спецификациях. Адаптеры второго поколении обычно поставляются с драйверами, работающими как в стандарте NDIS (спецификация интерфейса сетевого драйвера), разработанном фирмами 3Com и Microsoft и одобренном IBM, так и в стандарте ODI (интерфейс открытого драйвера), разработанном фирмой Novell.

Третье поколение

В сетевых адаптерах третьего поколения (к ним фирма 3Com относит свои адаптеры семейства EtherLink III) осуществляется конвейерная схема обработки кадров. Она заключается в том, что процессы приема кадра из оперативной памяти компьютера и передачи его в сеть совмещаются во времени. Таким образом, после приема нескольких первых байт кадра начинается их передача. Это существенно (на 25-55 %) повышает производительность цепочки «оперативная память - адаптер - физический канал - адаптер - оперативная память». Такая схема очень чувствительна к порогу начала передачи, то есть к количеству байт кадра, которое загружается в буфер адаптера перед началом передачи в сеть. Сетевой адаптер третьего поколения осуществляет самонастройку этого параметра путем анализа рабочей среды, а также методом расчета, без участия администратора сети. Самонастройка обеспечивает максимально возможную производительность для конкретного сочетания производительности внутренней шины компьютера, его системы прерываний и системы прямого доступа к памяти.

Адаптеры третьего поколения базируются на специализированных интегральных схемах (ASIC), что повышает производительность и надежность адаптера при одновременном снижении его стоимости. Компания 3Com назвала свою технологию конвейерной обработки кадров Parallel Tasking, другие компании также реализовали похожие схемы в своих адаптерах. Повышение производительности канала «адаптер-память» очень важно для повышения производительности сети в целом, так как производительность сложного маршрута о бработки кадров, включающего, например, концентраторы, коммутаторы, маршрутизаторы, глобальные каналы связи и т. п., всегда определяется производительностью самого медленного элемента этого маршрута. Следовательно, если сетевой адаптер сервера или клиентского компьютера работает медленно, никакие быстрые коммутаторы не смогут повысить скор ость работы сети.

Выпускаемые сегодня сетевые адаптеры можно отнести к четвертому поколению . В эти адаптеры обязательно входит ASIC, выполняющая функции МАС-уровня (англ. MAC-PHY), скорость развита до 1 гБит/сек, а также большое количество высокоуровневых функций. В набор таких функций может входить поддержка агента удаленного мониторинга RMON, схема приоритезации кадров, функции дистанционного управления компьютером и т. п. В серверных вариантах адаптеров почти обязательно наличие мощного процессора, разгружающего центральный процессор. Примером сетевого адаптера четвертого поколения может служить адаптер компании 3Com Fast EtherLink XL 10/100.

Сетевая карта – это компонент компьютера, который используется для подключения к локальной сети. Эти устройства редко доставляют какие-либо проблемы поэтому в большинстве случаев пользователи даже не знают, какая сетевая карта стоит на их компьютере.

Однако такая информация может понадобится, например, для поиска подходящих драйверов. В этом материале мы рассмотрим сразу 3 способа, как можно узнать название сетевой карты используемой на компьютере.

Способ № 1. Диспетчер устройств.

Если вы хотите узнать какая сетевая карта стоит на вашем компьютере, то самый простой способ - это воспользоваться «Диспетчером устройств». Открыть «Диспетчер устройств» можно разными способами. Самый простой вариант, это нажать комбинацию клавиш Windows-R и в появившемся окне ввести команду «mmc devmgmt.msc».

Также можно воспользоваться поиском в меню «Пуск». Для этого откройте меню «Пуск» и введите в поисковую строку «Диспетчер устройств». После этого система найдет нужную программу и предложит открыть ее.

После открытия «Диспетчера устройств», раскройте список «Сетевые адаптеры». В данном списке вы увидите название сетевой карты, которая установлена на вашем компьютере.

Нужно отметить, что иногда в списке «Сетевые адаптеры» могут находится виртуальные сетевые карты. Такие карты могут появиться после установки некоторых программ (например, программы VirtualBox).

Способ № 2. Командная строка.

Также вы можете узнать какая сетевая карта стоит на вашем компьютере с помощью «Командной строки Windows». Для этого сначала нужно запустить командную строку. Сделать это можно по-разному. Например, вы можете нажать комбинацию клавиш Windows-R и в появившемся окне выполнить команду «cmd».

После открытия командной строки в ней нужно выполнить команду «ipconfig/all».

В результате на экране появится информация о всех сетевых подключениях, используемых на вашем компьютере.

Здесь, среди прочей информации, для каждого сетевого подключения будет указано название сетевой карты. Оно будет указываться в строке «Описание».

Способ № 3. Программы.

Также вы можете узнать название сетевой карты, которая стоит на компьютере, с помощью специальных программ для просмотра характеристик компьютера. Например, можно использовать бесплатную программу . Установите данную программу на свой компьютер и запустите ее.

После запуска программы откройте раздел «Сеть». Здесь будет вся возможная информация о ваших сетевых подключениях и сетевых картах.

Выбираем сетевую карту, подходящую для Вашего компьютера. Виды сетевых карт: проводные и беспроводные. МАС-адрес сетевой карты. Принцип действия беспроводных карт.

Сетевая карта является особой аппаратной конфигурацией компьютера.

Это устройство разрешает выполнять подключение компьютера к сетям любых масштабов и обеспечивать его весьма продуктивное взаимодействие с ними.

По замыслу сетевая карта была одним из тех дополнительных устройств, которые возможно было купить и установить на компьютер не сразу, а в случае надобности, через определенное время.

Правда, теперь ясно, что сетевая карта превратилась уже в стандартный компонент, который смонтирован в подавляющем большинстве всех продающихся ПК - её интегрируют в материнские платы и иные устройства еще на стадии производства.

Разновидности сетевых карт

Теперь сетевые карты разрешают выполнять подключение компьютеров к сети не только при помощи кабеля, но и посредством беспроводного интерфейса.

При кабельном подключении применяется обычный сетевой порт с разъемом RJ-45. Для беспроводного подключения к сети никакие физические интерфейсы и порты не нужны.

Сейчас оба эти вида сетевых карт разрешают развить почти равную скорость передачи информации. Она варьируется в диапазоне 10-1000 мегабит/сек, что зависит от модели.

Идентификация

Всякая сетевая карта обязана обладать уникальностью - с этой целью её оснащают особым адресом МАС (mеdiа асcеss соntrоl), разрешающим идентифицировать каждый компьютер, который передаёт данные по сети.

Такой адрес представляет из себя 48-битную цифровую и символьную последовательность, которую прошивают в ROM -смонтированный на сетевой плате чип постоянной памяти. 24 первых бита MAC-адреса называются групповым уникальным идентификатором ОUI (оrgаnizаtiоnаllу uniquе idеntifiеr).

Как правило, адрес MAC привязан к производителю сетевого адаптера, но потом его можно изменить и на иной при помощи «MAC spoofing» технологии.

Какие принципы заложены в основу работы беспроводной сетевой карты?

В эпоху высоких технологий и мобильности беспроводный интернет становится особенно актуальным.

Небольшая сетевая карта беспроводного типа обеспечивает подключение ПК к сети без применения возможностей обычного кабельного соединения Ethernet или мобильной беспроводной связи GPRS.

Беспроводную карту можно использовать в разных вариантах исполнения. Например, в ноутбуках модуль беспроводного типа сразу интегрируется в системную плату.

Часто в настольных компьютерах карту ставят как дополнительную плату расширения какого-либо из слотов PCI.

По принципу действия беспроводные сетевые карты весьма просты. Такой беспроводный модем в ответе за непрерывность передачи и приема информации из сети.

Беспроводный роутер принимает на внешний порт данные от провайдера, которые затем преобразуются в радиосигнал, транслируемый в эфир посредством антенны.

Беспроводная сетевая карта этот сигнал принимает и немедленно преобразует его в сигнал электронный, адаптированный для ПК.

В общем-то, настройка беспроводной карты никак не отличается от настройки обычной, и даже более — с ней нет необходимости в физическом контакте.

Как следует выбирать беспроводную сетевую карту?

Если вы имеете несколько компьютеров, стоящих в разных комнатах офиса либо дома, причем, все они нуждаются в подключении к Интернету, то следует рассмотреть вариант создания сети беспроводного типа.

Чтобы принимать и передавать данные в подобной сети, нужно снабдить все присутствующие настольные компьютеры сетевыми картами беспроводного типа.

Выбирая карту, непременно учитывайте, тот фактор, что сейчас имеется довольно большой ассортимент подобных беспроводных модулей, но с различным подключающим интерфейсом и различными функциональными возможностями.

Сперва следует ознакомиться с инструкциями к вашим ПК (материнским платам) с целью уточнить, какие именно слоты расширения имеются в их оснащении.

Если поиск инструкций затруднен, то отсоедините все кабели, находящиеся позади системного блока, и демонтируйте боковую панель, отвернув предварительно винты, фиксирующие ее.

Проверьте наличие свободных слотов на материнской плате и уточните, какие они (АGР, РСI либо РСI-Ехprеss).

Определившись со свободным слотом следует в магазине выбрать сетевую карту именно с интерфейсом, соответствующим свободному слоту на вашем ПК.

В случае отсутствия свободного слота на ПК или если использовать его вы не желаете, следует подобрать внешний тип модема беспроводной связи, чтобы подключить его к USB порту компьютера.

Если в дальнейших ваших планах - подключение к кабельной сети, то постарайтесь выбрать карту, имеющую в оснащении дополнительный сетевой порт Ethernet.

Непременно проверьте, сможет ли карта, выбранная вами, поддерживать скорость, обеспечиваемую точкой доступа. Важно также убедиться, что сетевой картой поддерживается работа стандартов 802.11а, 802.11b, a тaкжe 802.11g и 802.11n.

Беспроводную карту следует аккуратно вставить на материнскую плату в свободный слот, вернуть на место боковую панель и затем можно подключать все сетевые и интерфейсные кабели к нужным разъемам.

Вслед за этим можно начинать настраивать беспроводную сетевую карту.

Также известная как сетевая карта, сетевой адаптер,Ethernet-адаптер , NIC (англ. network interface controller) - периферийное устройство, позволяющее компьютеру взаимодействовать с другими устройствами сети.

По физической реализации сетевые платы делятся на:

1.внутренние - отдельные платы, вставляющиеся в PCI, ISA или PCI-E слот

2.внешние , подключающиеся через USB или PCMCIA интерфейс, преимущественно использовавшиеся в ноутбуках.

3.встроенные в материнскую плату

Назначение сетевой платы

  • подготовка данных, поступающих от компьютера, к передаче по сетевому кабелю;
  • передача данных другому компьютеру;
  • управление потоком данных между компьютером и кабелем.
  • принимает данные из кабеля и переводит их в форму, понятную центральному процессору компьютера

Параметры сетевой платы

  • номер линии запроса на аппаратное прерывание IRQ
  • номер канала прямого доступа к памяти DMA (если поддерживается)
  • базовый адрес ввода/вывода
  • базовый адрес памяти ОЗУ (если используется)
  • поддержка стандартов автосогласования дуплекса/полудуплекса, скорости
  • поддержка теггрированных пакетов VLAN (801.q) с возможностью фильтрации пакетов заданного VLAN I
  • параметры WON (Wakeup on LAN)

Механизм

1.Подготовка данных

Перед тем как послать данные в сеть, плата сетевого адаптера должна перевести их из формы, понятной компьютеру, в форму, в которой они могут передаваться по сетевому кабелю.

Внутри компьютера данные передаются по шинам. Шина - это несколько проводников, расположенных параллельно друг другу. Так как линий несколько, то и биты данных передаются по ним блоками, а не последовательно.

В первых персональных компьютерах IBM использовались 8-разрядные шины: они могли передавать блоки по 8 битов данных. IBM PC/AT имеет 16-разрядную шину, - это означает, что она способна передавать сразу 16 битов. Большинство современных компьютеров оснащены уже 32-разрядной шиной. Часто говорят, что данные по шине компьютера передаются параллельно, так как 16 битов или 32 бита движутся параллельно друг другу.

В сетевом кабеле данные должны перемещаться в виде потока битов. При этом говорят, что происходит последовательная передача, потому что биты следуют друг за другом.

Плата сетевого адаптера принимает параллельные данные и организует их для последовательной, побитовой, передачи. Этот процесс завершается переводом цифровых данных компьютера в электрические и оптические сигналы, передающиеся по сетевым кабелям. Отвечает за это преобразование трансивер (приемопередатчик).

2.Сетевой адрес

Плата сетевого адаптера, помимо преобразования данных, должна указать свое местонахождение, или адрес, - чтобы ее могли отличить от остальных плат.

Сетевые адреса находятся в ведении комитета IEEE (Institute of Electrical and Electronics Engineers, Inc). Этот комитет IEEE закрепляет за каждым производителем плат сетевого адаптера некоторый интервал адресов. Затем каждый производитель записывает в ПЗУ платы ее уникальный сетевой адрес.

При приеме данных от компьютера и подготовке их к передаче по сетевому кабелю плата сетевого адаптера выполняет и другие действия:

  • Компьютер и плата сетевого адаптера должны быть связаны друг с другом, чтобы осуществлять передачу данных (от компьютера к плате). Если плата может использовать прямой доступ к памяти, компьютер выделяет ей некоторую область своей памяти.
  • Плата сетевого адаптера запрашивает у компьютера данные.
  • Шина компьютера передает данные из его памяти плате сетевого адаптера.

Часто данные поступают быстрее, чем их способна передать плата сетевого адаптера, поэтому временно они помещаются в буфер.

3.Передача и управление данными

Перед тем как послать данные в сеть, плата сетевого адаптера проводит электронный диалог с принимающей платой, во время которого они «обговаривают»:

  • максимальный размер блока передаваемых данных;
  • объем данных, передаваемых без подтверждения о получении;
  • интервалы между передачами блоков данных;
  • интервал, в течение которого необходимо послать подтверждение;
  • объем данных, который может принять каждая плата без переполнения буфера;
  • скорость передачи.

Если новой (более сложной и быстрой) плате приходится взаимодействовать со старой (медленной) платой, то они должны найти общую для них обеих скорость передачи. Схемы современных плат сетевого адаптера позволяют им приспособиться к медленной скорости старых плат.

Каждая плата оповещает другую о своих параметрах, принимая «чужие» параметры и подстраиваясь к ним. После того как все детали определены, платы начинают обмен данными.

4.Параметры настройки

Для правильной работы платы сетевого адаптера должны быть корректно установлены ее параметры:

  • номер прерывания (IRQ);
  • базовый адрес порта ввода/вывода;
  • базовый адрес памяти;
  • тип трансивера.

Параметры платы сетевого адаптера задаются в программном обеспечении и они должны совпадать с установками, заданными на плате перемычками или DIP-переключателями. Дополнительную информацию о настройке платы с помощью переключателей можно получить из ее документации.

5.Номер прерываний

Линии запроса прерывания - это физические линии, по которым различные устройства (например, порты ввода/вывода, клавиатура, дисковые накопители и платы сетевого адаптера) могут отправить микропроцессору запрос на обслуживание.

Линии запроса прерывания встроены в оборудование компьютера и имеют различные уровни приоритетов, что позволяет процессору определить наиболее важный из запросов.

Посылая компьютеру запрос, плата сетевого адаптера организует прерывание - электрический сигнал, который направляется центральному процессору компьютера. Все устройства в компьютере должны пользоваться разными линиями запроса прерывания, или прерыванием (IRQ). Линия запроса прерывания задается при настройке устройства.

В большинстве случаев платы сетевого адаптера используют прерывание IRQ3, IRQ5, IRQ10 или IRQ11. Если есть возможность выбирать, рекомендуется отдать предпочтение IRQ10, тем более что это значение установлено по умолчанию во многих системах. Для того, чтобы определить, какие значения прерываний установлены по умолчанию в Вашей системе, воспользуйтесь диагностическими программными утилитами.

6. Выбор трансивера

Плата сетевого адаптера может иметь и дополнительные параметры, - их также необходимо задать при настройке. Например, некоторые платы поставляются с внешним и встроенным трансивером. Нужно указать тот трансивер, который будет использоваться.

Выбор трансивера часто производится с помощью перемычек - небольших соединителей, которые, связывая два вывода, определяют, какая цепь будет работать.

7.Сетевые кабели и соединители

Координируя взаимодействие сетевого кабеля и компьютера, плата сетевого адаптера выполняет три важные функции:

  • организует физическое соединение с кабелем;
  • генерирует электрические или световые сигналы, передаваемые по кабелю;
  • следует определенным правилам, регламентирующим доступ к сетевому кабелю.

Прежде чем выбрать плату сетевого адаптера, подходящую для Вашей сети, надо установить тип кабеля и соединителей, которые Вы будете использовать.

Каждый тип кабеля имеет различные физические характеристики, которым должна соответствовать плата. Поэтому плата сетевого адаптера рассчитана для работы с определенным типом кабеля (коаксиальным, витой парой или оптоволокном).

Некоторые платы сетевого адаптера имеют несколько типов соединителей. Например, есть платы, разъемы которых подходят для тонкого и толстого коаксиальных кабелей, или для витой пары и толстого коаксиального кабеля.

Если у платы сетевого адаптера более одного интерфейсного разъема, выбор каждого из них производится либо с помощью перемычек или DIP-переключателей, расположенных на самой плате, либо программно. Чтобы правильно сконфигурировать сетевую плату, изучите ее документацию. Ниже приведены типичные соединители, которые можно найти на плате сетевого адаптера.